

Long-term Leap Attention, Short-term Periodic Shift for Video Classification

Hao Zhang, Lechao Cheng, Yanbin Hao*, Chong-Wah Ngo

Motivation

Video transformer processes T times longer sequence than the vision >transformer.

	Tensor Shape	Distance Calculations
Image	$z_i \in \mathbb{R}^{N \times D}$	N^2
Video	$z_v \in \mathbb{R}^{T \times N \times D}$	T^2N^2

Temporally *neighboring frames* are generally *similar* (redundancy) \succ despite being different in *micro details*.

 \succ To avoid redundancy, we can suppress attention on visually similar frames

Experiments

- Ablation Study: \succ
- 1. LAPS vs 2/3D Attention.

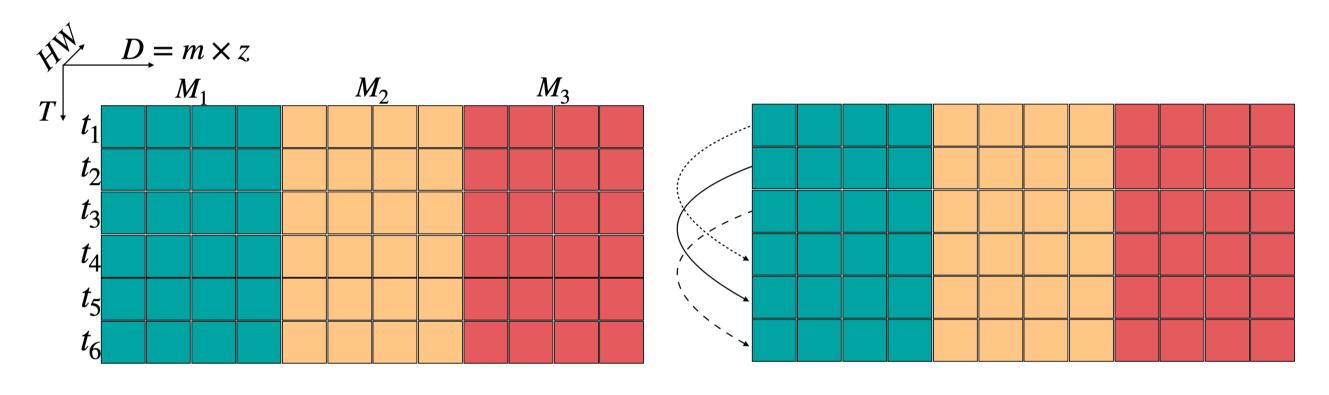
Model	MSHA	GFLOPs	Params (M)	Top-1 (%)
Base2D	2D Atten	39.1	39.8	74.00
Base3D	3D Atten	46.5 (18.9% ↑)	39.8	76.31
LAPS	Plain Shift	39.1	39.8	74.86
	<i>P</i> -Shift	39.1	39.8	75.19
	LA	40.1 (2.6% ↑)	39.8	75.84
	<i>P</i> -Shift + LA	40.1 (2.6% ↑)	39.8	76.04

2. Pyramid Skipping

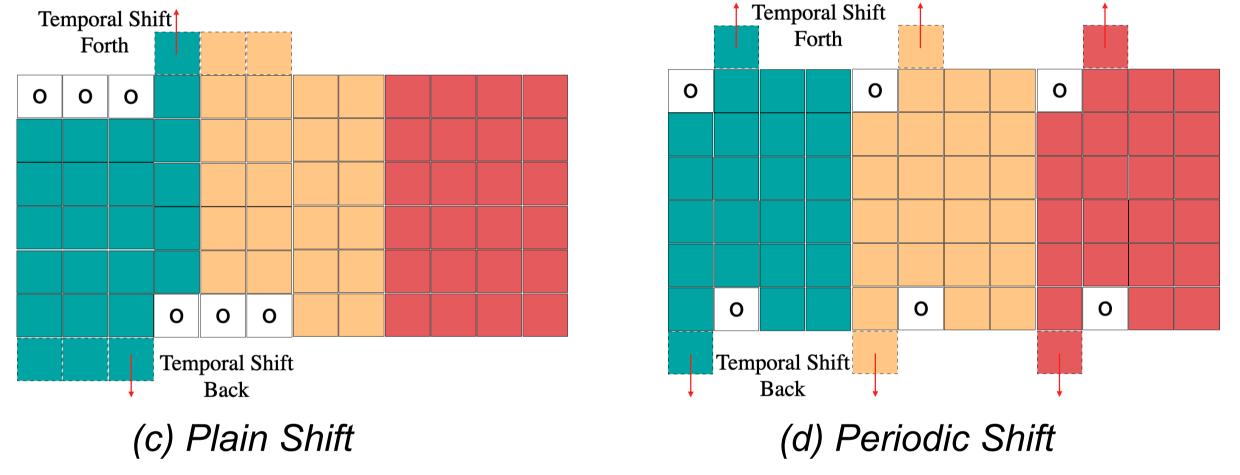
in a dilated manner. For micro details, we can launch short-term temporal shift operation. Complexity becomes: $T^2N^2 \rightarrow 2TN^2$

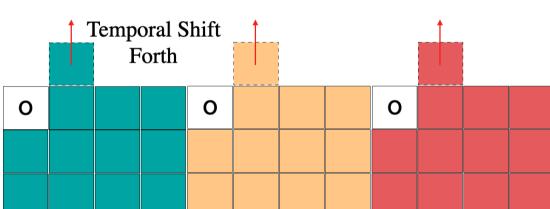
Proposed Framework

Leap Attention with Periodic Shift encoder (LAPS): contains Leap \succ Attention (LA) and Periodic Shift (PS). The LA and PS separately serves to model long-term temporal relations and short-term variations between adjacent frames.



(a) Video Tensor





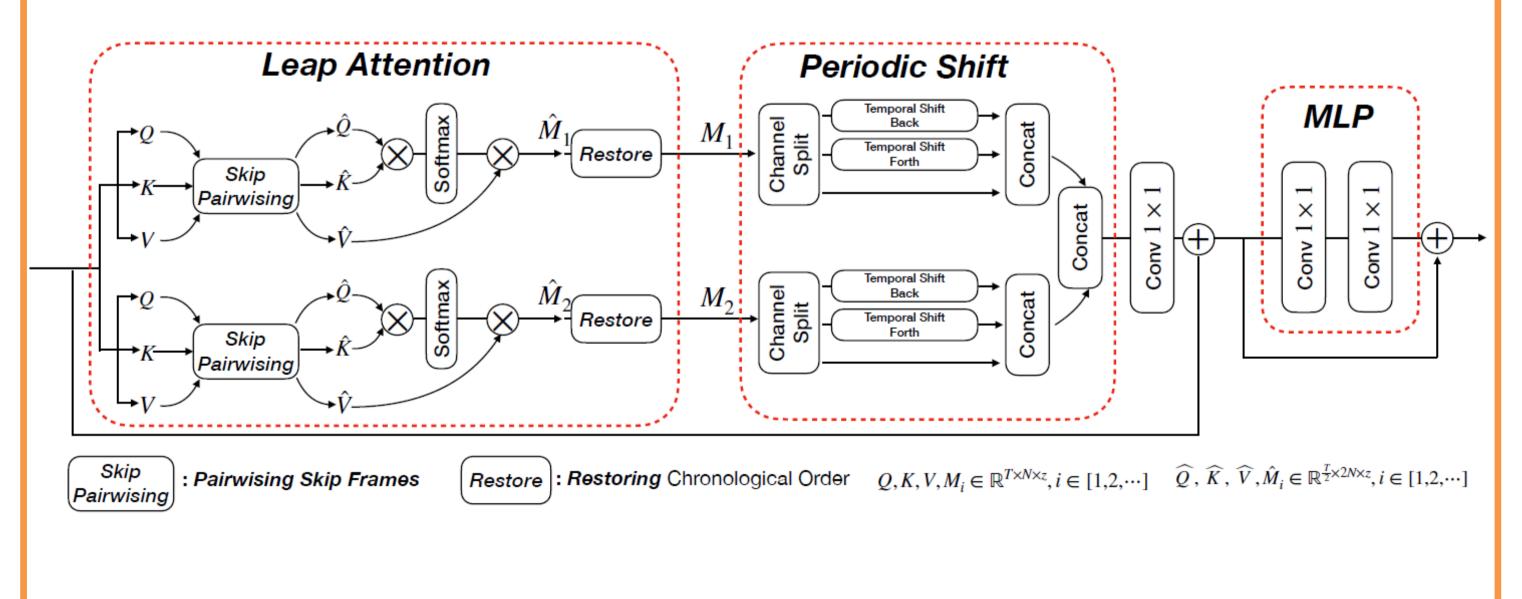
Model	Pyramids	Skipped Steps	Top-1
LAPS	R=[3, 3, 3]	$S = [1/8, 1/8, 1/8] \cdot T$	75.55
	R=[2, 2, 2]	$S = [1/4, 1/4, 1/4] \cdot T$	75.82
	R=[1, 1, 1]	$S = [1/2, 1/2, 1/2] \cdot T$	75.86
	R = [1, 2, 3]	$S = [1/2, 1/4, 1/8] \cdot T$	76.04

Comparison with SOTA: \succ

Model	Base	Pretrain	#F×Res	GFLOPs×Views	Params	Training	Top-1	Top-5
			$(T \times HW)$		(M)	Epochs	(%)	(%)
TDN-R50 [39]	ResNet50	IN-1K	24×256^2	108.0×30	26.6	100	78.40	93.60
TDN-R101 [39]	ResNet101	IN-1K	24×256^2	198.0 imes 30	43.9	100	79.40	94.40
GC-TDN-R50 [14]	ResNet50	IN-1K	24×256^2	110.1×30	27.4	100	79.60	94.10
SlowFast 8×8 [9]	ResNet50	None	32×256^2	65.7 imes 30	-	196	77.00	92.60
SlowFast 16×8 [9]	ResNet101+NL	None	32×256^2	234.0×30	59.9	196	79.80	93.90
X3D-L [8]	X2D	None	$16 imes 356^2$	24.8×30	6.1	256	77.50	92.90
X3D-XL [8]	X2D	None	16×356^2	48.4×30	11.0	256	79.10	93.90
ViT (Video) [47]	ViT-B	IN-22K	8×224^2	134.7 imes 30	85.9	18	76.00	92.50
TokShift [47]	ViT-B	IN-22K	16×224^2	269.5×30	85.9	18	78.20	93.80
TokShift (MR) [47]	ViT-B	IN-22K	8×256^2	175.8 imes 30	85.9	18	77.68	93.55
VTN [28]	ViT-B	IN-22K	250×224^2	4218.0 imes 1	114.0	25	78.60	93.70
TimeSformer [1]	ViT-B	IN-22K	8×224^2	590.0×3	121.4	15	78.00	93.70
Video Swin [25]	Swin-B	IN-1K	32×224^2	281.6×12	88.0	30	80.60	94.60
MViT [6]	MViT-B	None	64×224^2	455.0×9	36.64	200	81.20	95.10
LAPS	Visformer	IN-10K	8×224^2	40.1×15	39.8	18	76.04	92.56
LAPS (L)	Visformer	IN-10K	16×320^2	173.0 imes 15	40.0	18	78.71	93.77
LAPS (H)	Visformer	IN-10K	32×320^2	346.0 imes 15	40.0	18	79.72	94.08
LAPS (E)	Visformer	IN-15K	32×360^2	434.0×15	40.2	18	80.03	94.48

Table 4: Comparison to state-of-the-arts on Kinetics-400 Val.

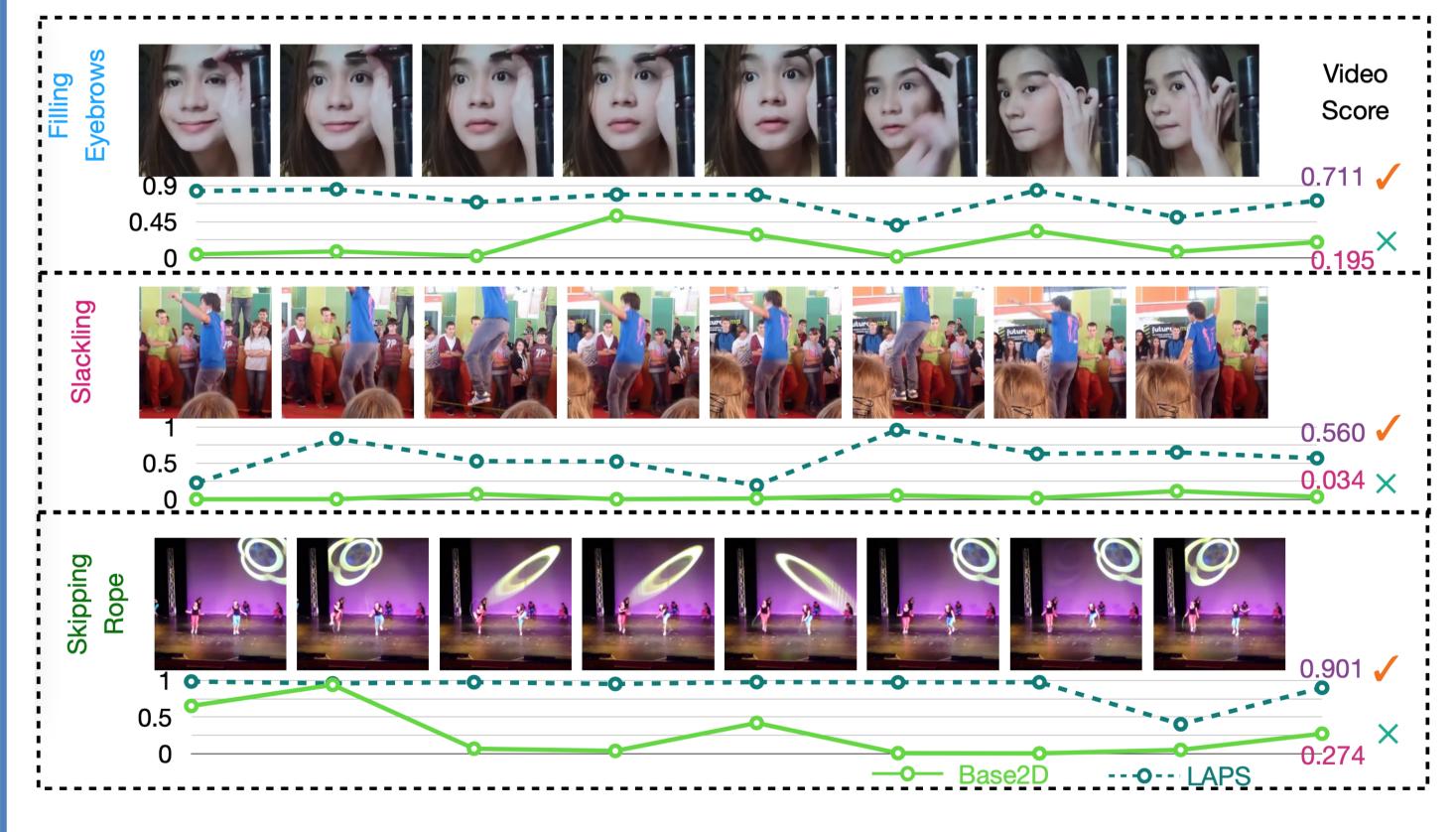
An LAPS overview: is a zero-parameter, lightweight-FLOPs attention \succ alternative. It can flexibly replace a generic 2D attention and convert a static vision transformer into a video one.



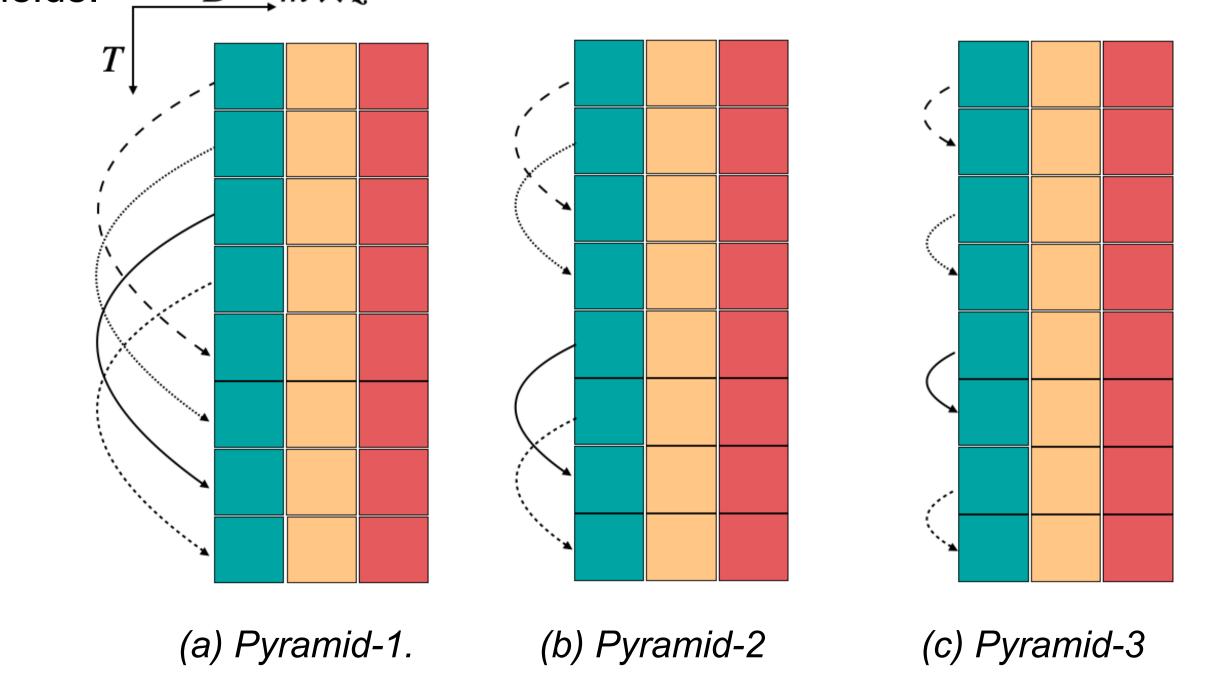
Pyramid Skipping aims to connect frames with various distances into \succ pairs, therefore facilitating the LA to have multi-scale temporal receptive fields. $\underline{D} = m \times z$

Visualization

Visualization of Video Exemplars >



We test Base2D and LAPS on the Kinetics-400 val set. The solid and dashed line separately denotes per-frame predictions from Base2D and LAPS transformer.



Conclusion and Resources

- **Conclusions**: \succ
- 1. LAPS is a cost-effective alternative to 3D attention for temporal modeling. 2. We could build long/short-term relation with Leap Attention/Periodic Shift. 3. Leap Attention is a new temporal dilated attention.
- Contact & Resources \succ zhanghaoinf@gmail.com chenglc@zhejianglab.com haoyanbin@hotmail.com cwngo@smu.edu.sg



