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Goal and Contribution
Goal: Exploring various axial contexts to separately calibrate video feature channel groups
in parallel with little computational overhead.
Contributions:
• We propose a new regime named group contextualization (GC) for video feature refine-

ment, where a family of efficient element-wise calibrators (ECals) are purposely designed
to model local and global axial contexts.

• The proposed GC module is easily integrated into various basic video CNNs without incur-
ring significant computational burden and leads to notable performance gains.

Method
Module Architecture:
• The input CNN feature X ∈ RT×H×W×C is firstly split into two channel groups
X1 ∈ RT×H×W×pC and X2 ∈ RT×H×W×(1−p)C . Then, four feature calibrators (ECal-
G/S/T/L) are customized to focus on four different axial perspectives and separately refine
the four feature channel subgroups (p4C channels) of X1 in parallel. All ECals share the
similar cascaded structure of “GAP/None+FC/Conv+Sigmoid” for efficiency.
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Integrated Networks:
• We integrate the GC module into three basic video networks, i.e., TSN, TSM, and GST,

and a more advanced network, i.e., TDN, referred to as GC-TSN, GC-TSM, GC-GST and
GC-TDN, respectively.

• We also empirically investigate a new position setting, i.e., the loop version, to examine the
effect of channel position.
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Channel Portion ID 0 1 2 3 4 5 6 7

Res1

Bottleneck-1 G S T L

Bottleneck-2 G S T L

Bottleneck-3 G S T L

Res2

Bottleneck-1 G S T L

Bottleneck-2 G S T L

Bottleneck-3 L G S T

Bottleneck-4 T L G S

Res3

Bottleneck-1 S T L G

Bottleneck-2 G S T L

Bottleneck-3 G S T L

Bottleneck-4 G S T L

Bottleneck-5 G S T L

Bottleneck-6 G S T L

Res4

Bottleneck-1 L G S T

Bottleneck-2 T L G S

Bottleneck-3 S T L G

Experiments & Results
Dataset: We conduct experiments on several different benchmarks, for
example, Something-Something V1&V2 and Kinetics-400 for video
recognition.
Effectiveness of GC Module on Something-Something V1:

Norm” layer after each convolutional/FC layer in the ECals
for TSN, TSM and TDN. We implement GC-Nets in Py-
torch and run them on servers with 4×2080Ti or 4/8×3090.

Training & Inference. The training protocol mainly
follows the work [46]. Specifically, we use uniform sam-
pling for all datasets. The spatial short side of input frames
is resized to 256 maintaining the aspect ratio and then
cropped to 224×224. Data augmentation also follows [46].
Training configurations for GC-TSN/TSM/GST are set as
follows: a batch-size of 8/10 per GPU, an initial learning
rate of 0.01 for 50 epochs and decayed at epoch 20 and 40,
the SGD optimizer. GC-TDN follows the training protocol
of TDN [45]. The dropout ratio is set to 0.5. During the
inference, we uniformly sample 8 frames per video and use
the 224×224 center crop for performance report in the abla-
tion study. In the final performance comparison, we sample
multiple clips per video and take no more than three crops
per clip. Specifically, the test protocols are: 2 clips × 3
crops (224×224) for Something-Something V1&V2, and 1
clip × 1 center crop (224×224) for others. We will also
specify the sampled frames in the tables.

4.2. Ablation Study

We present ablation study to investigate the effect of
hyperparameters, including the channel partition ratio p,
channel position, calibrator variants and backbones, on
Something-Something V1 dataset.

p and calibrators. We first compare different ECals on
TSN with p = 1

2 , 1. The four types of ECals are designed
to calibrate video feature with different axial context con-
cerns. And the channel partition ratio p is introduced to con-
trol the number of channels to be calibrated by ECals. As
shown in Table 2, we observe that ECal variants, regardless
of their types, consistently improve the recognition perfor-
mance of the backbone TSN, indicating their effectiveness.
Although varying the value of p from 1

2 to 1 will result in
slight increase of model size and computational cost, the
performance boost is noticeable (e.g., 26.3%→27.3% for
ECal-G and 35.9%→36.4% for ECal-T).

Channel position and backbones. Secondly, we test
both the standard and loop GC versions on the four back-
bones. Here, we also set p = 1

2 , 1. Table 2 shows their
results. Compared to the single calibrator, the GC mod-
ule, which combines the four ECals in parallel, achieves
much better performance on TSN. The GC-TSM, GC-GST
and GC-TDN also gain significant performance improve-
ment (45.6%→48.9% for TSM, 44.4%→46.7% for GST,
52.3%→53.7% for TDN) to their original backbones. Con-
sistently, the models with larger p = 1 outperform their
counterparts with p = 1

2 . Based on the above results, we
fix p = 1 for the GC-Nets in this work. For the channel
position, we observe different performance tendencies on
the four backbones, i.e., the result of loop version is clearly

Backbone Calibrator (p, Channel) Params FLOPs Top-1 (%)

TSN

— — 23.9M 32.9G 19.7
SE3D — 26.4M 32.9G 27.8 (+8.1)
GE3D-G — 23.9M 32.9G 22.3 (+2.6)
GE3D-C — 25.2M 33.3G 44.2 (+24.5)
S3D-G — 25.1M 32.9G 28.0 (+8.3)
NLN — 31.2M 49.4G 30.3 (+10.6)

ECal-G ( 12 , 1
8C) 23.9M 32.9G 26.3 (+6.6)

(1, 1
4C) 23.9M 32.9G 27.3 (+7.6)

ECal-T ( 12 , 1
8C) 23.9M 32.9G 35.9 (+16.2)

(1, 1
4C) 24.1M 32.9G 36.4 (+16.7)

ECal-S ( 12 , 1
8C) 24.0M 32.9G 34.0 (+14.3)

(1, 1
4C) 24.6M 33.0G 34.1 (+14.4)

ECal-L ( 12 , 1
8C) 23.9M 33.0G 44.8 (+25.1)

(1, 1
4C) 24.1M 33.2G 44.9 (+25.2)

GC
( 12 , 1

2C) 24.2M 33.0G 47.1 (+27.4)
(1, C) 25.1M 33.3G 47.9 (+28.2)

(1, C), loop 25.1M 33.3G 48.0 (+28.3)

TSM

— — 23.9M 32.9G 45.6
SE3D — 26.4M 32.9G 46.7 (+1.1)
GE3D-G — 23.9M 32.9G 45.7 (+0.1)
GE3D-C — 25.2M 33.3G 47.0 (+1.4)
S3D-G — 25.1M 32.9G 46.8 (+1.2)
NLN — 31.2M 49.4G 47.2 (+1.6)

GC
( 12 , 1

2C) 24.2M 33.0G 48.7 (+3.1)
(1, C) 25.1M 33.3G 48.9 (+3.3)

(1, C), loop 25.1M 33.3G 48.9 (+3.3)

GST

— — 21.0M 29.2G 44.4

GC
( 12 , 1

2C) 21.4M 29.3G 45.5 (+1.1)
(1, C) 22.3M 29.6G 45.6 (+1.2)

(1, C), loop 22.3M 29.6G 46.7 (+2.3)

TDN
— — 26.1M 36.0G 52.3

GC (1, C) 27.4M 36.7G 53.7 (+1.4)
(1, C), loop 27.4M 36.7G 53.6 (+1.3)

Table 2. Performance changes using different backbones, cal-
ibrators, partition ratio p and channel position on Something-
Something V1 dataset. “Channel” denotes the number of chan-
nels in each calibrated feature group. SE3D is the 3D variant of
SE-Net [16] by replacing the 2D spatial average pooling with the
3D spatio-temporal average pooling. GE3D-G and GE3D-C are
two 3D variants of GE-Net [15], where GE3D-G adopts global av-
erage pooling and GE3D-C employs 3D depthwise convolution.
Their architectures can be found in Appendix. NLN denotes the
nonlocal [47] module.

better than the standard version on GST, and their perfor-
mances are about the same on TSN, TSM and TDN. As
analysed in Section 3.3, this is because that feature channels
in TSN, TSM and TDN are entangled together during the
feature learning while the group convolution method GST
separately models the spatial and temporal features.

Comparison with other calibrators. Thirdly, we in-
tegrate the 3D variants of SE-Net [16] and GE-Net [15],
i.e., SE3D and GE3D-G/C, S3D-G and NLN, into the TSN
and TSM backbones. Their hyperparameters are set as the
same to their original papers. The NLN-Nets follows the
implementation of [26]. From Table 2, we can find that
our GC module far outstrips SE3D, GE3D-G and S3D-G
which only consider the global context and the pairwise
self-attention NLN when using TSN as backbone. Since
GE3D-C uses three 3D depthwise convolution layers to
model local spatio-temporal context, relatively good perfor-
mance (44.2% Top-1 accuracy) is attained on TSN but still
lower than our GC (47.9%). On TSM, our GC can outper-

• Both the single Ecal and the combined GC consistently improve the
recognition performance of backbones.

Example Demonstration:
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• GC can boost the recognition of activities that need global/&local
contexts.

Result on Something-Something V2:
Method Params #Frame FLOPs×Clips Top-1 Top-5

TIN [36] 24.6M 16 67.0G×1 60.1 86.4
RubiksNet [5] 8.5M 8 15.8G×2 61.7 87.3
TSM+TPN [51] — 8 33.0G×1 62.0 —
SlowFast [7] 32.9M 4+32 65.7G×6 61.9 87.0
SlowFast(R101) [7] 53.3M 8+32 106G×6 63.1 87.6
SmallBig [22] — 16 114.0G×6 63.8 88.9
STM [19] 24.0M 16 33.3G×30 64.2 89.8
TEA [23] — 16 70.0G×30 65.1 89.9
TEINet [27] 30.4M×2 8+16 99.0G×1 65.5 89.8
TANet [29] 25.1M×2 8+16 99.0G×6 66.0 90.1
TimeSformer-HR [2] 121.4M 16 1703G×3 62.5 —
ViViT-L [1] 352.1M 32 903G×4 65.4 89.8
MViT-B [4] 36.6M 64 455G×3 67.7 90.9
Video-Swin-B [28] 88.8M 16 321G×3 69.6 92.7
TSN [56] from [26] 23.9M 8 32.9G×1 30.0 60.5
GST* [30] 21.0M 8 29.2G×2 59.8 86.3
GST* [30] 21.0M 16 58.4G×2 61.7 87.2
GST* [30] 21.0M×2 8+16 87.6G×2 63.1 88.3
TSM [26] 23.9M 8 32.9G×2 61.2 87.1
TSM [26] 23.9M 16 65.8G×2 63.1 88.2
TSM [26] 23.9M×2 8+16 98.7G×2 64.3 89.0
TDN [45] 26.1M 8 36.0G×1 64.0 88.8
TDN [45] 26.1M 16 72.0G×1 65.3 89.5
TDN [45] 26.1M×2 8+16 108G×1 67.0 90.3
GC-GST 22.3M 8 29.6G×2 61.9 87.8
GC-GST 22.3M 16 59.1G×2 63.3 88.5
GC-GST 22.3M×2 8+16 88.7G×2 65.0 89.5
GC-TSN 25.1M 8 33.3G×2 62.4 87.9
GC-TSN 25.1M 16 66.5G×2 64.8 89.4
GC-TSN 25.1M 8+16 99.8G×2 66.3 90.3
GC-TSM 25.1M 8 33.3G×2 63.0 88.4
GC-TSM 25.1M 16 66.5G×2 64.9 89.7
GC-TSM 25.1M×2 8+16 99.8G×2 66.7 90.6
GC-TSM 25.1M×2 8+16 99.8G×6 67.5 90.9
GC-TDN 27.4M 8 36.7G×1 64.9 89.7
GC-TDN 27.4M 16 73.4G×1 65.9 90.0
GC-TDN 27.4M×2 8+16 110.1G×1 67.8 91.2

Table 4. Comparison of performance on Something-Something
V2 dataset. “*” indicates that the result is obtained by ourselves.

can work cooperatively with the temporal difference con-
texts used by TDN. Compared to the more sophisticated
Transformer-based models like MViT and Video-Swin, the
GC-TSM and GC-TDN obtain lower Top-1 accuracies. The
performance is compensated by lower computational cost
and model complexity. GC-TDN requires 110.1G FLOPs,
which is about 11.4 times cheaper than MViT-B (1,365G
FLOPs) and 7.7 times lower than Video-Swin-B (963G
FLOPs).

Kinetcis-400. We report the results of GC-TSN with 8
frames and GC-TSM/TD with 8 and 16 frames respectively,
in Table 5. Firstly, the GC-TSN/TSM/TDN improve the
Top1 accuracy upon TSN/TSM/TDN by 4.6%/2.0%/1.2%
under the same input, respectively. They are much sig-
nificant in terms of the data scale of Kinetics-400 dataset.
Secondly, GC-TDN, with 16×30 clips as input, achieves
the 79.6% Top1 accuracy, which is the highest one among
the competing methods. This result is much better than
other models equipped with feature contextualization tech-
niques, such as Nonlocal-I3D, S3D-G and TEA, which fur-
ther demonstrates the superior performance of the proposed
GC module.

Model Params #Frame FLOPs×Clips Top1 Top5

I3D (InceptionV1) [3] — 64 — 72.1 90.3
Nonlocal-I3D [47] 35.3M 32 282G×10 74.9 91.6
S3D-G (InceptionV1) [50] — 64 71.4G×30 74.7 93.4
TEA [23] — 16 70G×30 76.1 92.5
TEINet [27] 30.8M 16 66G×30 76.2 92.5
TANet [29] 25.6M 16 86G×12 76.9 92.9
SmallBig [22] — 8 57G×30 76.3 92.5
SlowFast(8×8) [7] 32.9M 8+32 65.7G×30 77.0 92.6
X3D-L [6] 6.1M 16 24.8G×30 77.5 92.9
TSN [56] 24.3M 8 32.9G×10clip 70.6 89.2
TSM [26] 24.3M 16 66.0G×10 74.7 91.4
TDN [45] 26.6M 8+16 108.0G×30 78.4 93.6
GC-TSN 25.6M 8 33.3G×10 75.2 92.1
GC-TSM 25.6M 8 33.3G×10 75.4 91.9
GC-TSM 25.6M 16 66.6G×10 76.7 92.9
GC-TSM 25.6M 16 66.6G×30 77.1 92.9
GC-TDN 27.4M 8 36.7G×30 77.3 93.2
GC-TDN 27.4M 16 73.4G×30 78.8 93.8
GC-TDN 27.4M 8+16 110.1G×30 79.6 94.1

Table 5. Comparison of performance on Kinetics-400 dataset.

5. Conclusion
We have presented the regime of group contextualiza-

tion, which aims at deriving robust representations generic
to various video activities by calibrating plain features com-
puted from off-the-shelf networks with multiple contexts.
The family of element-wise calibrators is designed to work
on different grouped feature channels independently. The
group operation results in a much lower computation cost
increase (5.3%/1.3% extra parameters/FLOPs) and sub-
stantial performance improvements (0.4%-32.4%) to back-
bones. More surprisingly, when GC module is integrated
into the 2D spatial TSN model, GC-TSN achieves absolute
28.2%/32.4% performance improvements on Something-
Something V1/V2 and even performs much better than the
advanced 3D spatio-temporal GST and TSM models. We
conclude that since the videos in Something-Something
datasets contain rich global/local human-object interac-
tions, GC module that explores various global/local spa-
tial/temporal axial contexts to calibrate the original feature
exhibits excellent performance. Similar results are also ob-
served from the other datasets (e.g., Diving and Kitchen
Activities). Moreover, compared to the other feature cali-
bration methods, such as SE3D, GE3D, S3D-G, TEA and
TANet that only use a single context, GC-Nets consistently
achieve better performances, which further proves the fea-
sibility and advantages of the proposed group contextual-
ization. The significant performance improvement of GC-
TDN further demonstrates that our GC can also work to-
gether with the other temporal difference context (TDN).
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• The GC module boosts the 2D/3D video CNNs with substantial
improvements on Something-Something V2 dataset.

• GC-Nets achieve either better or the best performances compared
to the SOTAs.

Result on Kinetics-400:
Method Params #Frame FLOPs×Clips Top-1 Top-5

TIN [36] 24.6M 16 67.0G×1 60.1 86.4
RubiksNet [5] 8.5M 8 15.8G×2 61.7 87.3
TSM+TPN [51] — 8 33.0G×1 62.0 —
SlowFast [7] 32.9M 4+32 65.7G×6 61.9 87.0
SlowFast(R101) [7] 53.3M 8+32 106G×6 63.1 87.6
SmallBig [22] — 16 114.0G×6 63.8 88.9
STM [19] 24.0M 16 33.3G×30 64.2 89.8
TEA [23] — 16 70.0G×30 65.1 89.9
TEINet [27] 30.4M×2 8+16 99.0G×1 65.5 89.8
TANet [29] 25.1M×2 8+16 99.0G×6 66.0 90.1
TimeSformer-HR [2] 121.4M 16 1703G×3 62.5 —
ViViT-L [1] 352.1M 32 903G×4 65.4 89.8
MViT-B [4] 36.6M 64 455G×3 67.7 90.9
Video-Swin-B [28] 88.8M 16 321G×3 69.6 92.7
TSN [56] from [26] 23.9M 8 32.9G×1 30.0 60.5
GST* [30] 21.0M 8 29.2G×2 59.8 86.3
GST* [30] 21.0M 16 58.4G×2 61.7 87.2
GST* [30] 21.0M×2 8+16 87.6G×2 63.1 88.3
TSM [26] 23.9M 8 32.9G×2 61.2 87.1
TSM [26] 23.9M 16 65.8G×2 63.1 88.2
TSM [26] 23.9M×2 8+16 98.7G×2 64.3 89.0
TDN [45] 26.1M 8 36.0G×1 64.0 88.8
TDN [45] 26.1M 16 72.0G×1 65.3 89.5
TDN [45] 26.1M×2 8+16 108G×1 67.0 90.3
GC-GST 22.3M 8 29.6G×2 61.9 87.8
GC-GST 22.3M 16 59.1G×2 63.3 88.5
GC-GST 22.3M×2 8+16 88.7G×2 65.0 89.5
GC-TSN 25.1M 8 33.3G×2 62.4 87.9
GC-TSN 25.1M 16 66.5G×2 64.8 89.4
GC-TSN 25.1M 8+16 99.8G×2 66.3 90.3
GC-TSM 25.1M 8 33.3G×2 63.0 88.4
GC-TSM 25.1M 16 66.5G×2 64.9 89.7
GC-TSM 25.1M×2 8+16 99.8G×2 66.7 90.6
GC-TSM 25.1M×2 8+16 99.8G×6 67.5 90.9
GC-TDN 27.4M 8 36.7G×1 64.9 89.7
GC-TDN 27.4M 16 73.4G×1 65.9 90.0
GC-TDN 27.4M×2 8+16 110.1G×1 67.8 91.2

Table 4. Comparison of performance on Something-Something
V2 dataset. “*” indicates that the result is obtained by ourselves.

can work cooperatively with the temporal difference con-
texts used by TDN. Compared to the more sophisticated
Transformer-based models like MViT and Video-Swin, the
GC-TSM and GC-TDN obtain lower Top-1 accuracies. The
performance is compensated by lower computational cost
and model complexity. GC-TDN requires 110.1G FLOPs,
which is about 11.4 times cheaper than MViT-B (1,365G
FLOPs) and 7.7 times lower than Video-Swin-B (963G
FLOPs).

Kinetcis-400. We report the results of GC-TSN with 8
frames and GC-TSM/TD with 8 and 16 frames respectively,
in Table 5. Firstly, the GC-TSN/TSM/TDN improve the
Top1 accuracy upon TSN/TSM/TDN by 4.6%/2.0%/1.2%
under the same input, respectively. They are much sig-
nificant in terms of the data scale of Kinetics-400 dataset.
Secondly, GC-TDN, with 16×30 clips as input, achieves
the 79.6% Top1 accuracy, which is the highest one among
the competing methods. This result is much better than
other models equipped with feature contextualization tech-
niques, such as Nonlocal-I3D, S3D-G and TEA, which fur-
ther demonstrates the superior performance of the proposed
GC module.

Model Params #Frame FLOPs×Clips Top1 Top5

I3D (InceptionV1) [3] — 64 — 72.1 90.3
Nonlocal-I3D [47] 35.3M 32 282G×10 74.9 91.6
S3D-G (InceptionV1) [50] — 64 71.4G×30 74.7 93.4
TEA [23] — 16 70G×30 76.1 92.5
TEINet [27] 30.8M 16 66G×30 76.2 92.5
TANet [29] 25.6M 16 86G×12 76.9 92.9
SmallBig [22] — 8 57G×30 76.3 92.5
SlowFast(8×8) [7] 32.9M 8+32 65.7G×30 77.0 92.6
X3D-L [6] 6.1M 16 24.8G×30 77.5 92.9
TSN [56] 24.3M 8 32.9G×10clip 70.6 89.2
TSM [26] 24.3M 16 66.0G×10 74.7 91.4
TDN [45] 26.6M 8+16 108.0G×30 78.4 93.6
GC-TSN 25.6M 8 33.3G×10 75.2 92.1
GC-TSM 25.6M 8 33.3G×10 75.4 91.9
GC-TSM 25.6M 16 66.6G×10 76.7 92.9
GC-TSM 25.6M 16 66.6G×30 77.1 92.9
GC-TDN 27.4M 8 36.7G×30 77.3 93.2
GC-TDN 27.4M 16 73.4G×30 78.8 93.8
GC-TDN 27.4M 8+16 110.1G×30 79.6 94.1

Table 5. Comparison of performance on Kinetics-400 dataset.

5. Conclusion
We have presented the regime of group contextualiza-

tion, which aims at deriving robust representations generic
to various video activities by calibrating plain features com-
puted from off-the-shelf networks with multiple contexts.
The family of element-wise calibrators is designed to work
on different grouped feature channels independently. The
group operation results in a much lower computation cost
increase (5.3%/1.3% extra parameters/FLOPs) and sub-
stantial performance improvements (0.4%-32.4%) to back-
bones. More surprisingly, when GC module is integrated
into the 2D spatial TSN model, GC-TSN achieves absolute
28.2%/32.4% performance improvements on Something-
Something V1/V2 and even performs much better than the
advanced 3D spatio-temporal GST and TSM models. We
conclude that since the videos in Something-Something
datasets contain rich global/local human-object interac-
tions, GC module that explores various global/local spa-
tial/temporal axial contexts to calibrate the original feature
exhibits excellent performance. Similar results are also ob-
served from the other datasets (e.g., Diving and Kitchen
Activities). Moreover, compared to the other feature cali-
bration methods, such as SE3D, GE3D, S3D-G, TEA and
TANet that only use a single context, GC-Nets consistently
achieve better performances, which further proves the fea-
sibility and advantages of the proposed group contextual-
ization. The significant performance improvement of GC-
TDN further demonstrates that our GC can also work to-
gether with the other temporal difference context (TDN).
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• GC improves the performance of TSN, TSM and TDN by
large margins on Kinetics-400 dataset, and GC-TDN with 8+16
frames achieves the highest top-1 accuracy of 79.6% over all the
competing methods.


