

Goal and Contribution

Goal: Exploring various axial contexts to separately calibrate video feature channel groups in parallel with little computational overhead.

Contributions:

- We propose a new regime named group contextualization (GC) for video feature refinement, where a family of efficient element-wise calibrators (ECals) are purposely designed to model local and global axial contexts.
- The proposed GC module is easily integrated into various basic video CNNs without incurring significant computational burden and leads to notable performance gains.

Method

Module Architecture:

• The input CNN feature $\mathbf{X} \in \mathbb{R}^{T \times H \times W \times C}$ is firstly split into two channel groups $\mathbf{X}^1 \in \mathbb{R}^{T \times H \times W \times pC}$ and $\mathbf{X}^2 \in \mathbb{R}^{T \times H \times W \times (1-p)C}$. Then, four feature calibrators (ECal-G/S/T/L) are customized to focus on four different axial perspectives and separately refine the four feature channel subgroups ($\frac{p}{4}C$ channels) of \mathbf{X}^1 in parallel. All ECals share the similar cascaded structure of "GAP/None+FC/Conv+Sigmoid" for efficiency.

Integrated Networks:

- We integrate the GC module into three basic video networks, i.e., TSN, TSM, and GST, and a more advanced network, i.e., TDN, referred to as GC-TSN, GC-TSM, GC-GST and GC-TDN, respectively.
- We also empirically investigate a new position setting, i.e., the loop version, to examine the effect of channel position.

Group Contextualization for Video Recognition

Yanbin Hao¹ Hao Zhang^{2*} Chong-Wah Ngo² Xiangnan He¹ ¹University of Science and Technology of China

²Singapore Management University

Experiments & Results

Dataset: We conduct experiments on several different benchmarks, for example, Something-Something V1&V2 and Kinetics-400 for video recognition.

Effectiveness of GC Module on Something-Something V1:

Backbone	Calibrator	(p, Channel)	Params	FLOPs	Top-1 (%)	
			23.9M	32.9G	19.7	
	SE3D		26.4M	32.9G	27.8 (+8.1)	
	GE3D-G		23.9M	32.9G	22.3 (+2.6)	
	GE3D-C		25.2M	33.3G	44.2 (+24.5)	
	S3D-G		25.1M	32.9G	28.0 (+8.3)	
	NLN		31.2M	49.4G	30.3 (+10.6)	
	ECal-G	$(\frac{1}{2}, \frac{1}{8}C)$	23.9M	32.9G	26.3 (+6.6)	
		$(\overline{1}, \frac{1}{4}C)$	23.9M	32.9G	27.3 (+7.6)	
TSN	ECal-T	$(\frac{1}{2}, \frac{1}{8}C)$	23.9M	32.9G	35.9 (+16.2)	
IGIN		$(1, \frac{1}{4}C)$	24.1M	32.9G	36.4 (+16.7)	
	ECal-S	$(\frac{1}{2}, \frac{1}{8}C)$	24.0M	32.9G	34.0 (+14.3)	
		$(\tilde{1}, \frac{1}{4}C)$	24.6M	33.0G	34.1 (+14.4)	
	ECal-L	$(\frac{1}{2}, \frac{1}{8}C)$	23.9M	33.0G	44.8 (+25.1)	
		$(1, \frac{1}{4}C)$	24.1M	33.2G	44.9 (+25.2)	
	GC	$(\frac{1}{2}, \frac{1}{2}C)$	24.2M	33.0G	47.1 (+27.4)	
		$(1, \tilde{C})$	25.1M	33.3G	47.9 (+28.2)	
		(1, C), loop	25.1M	33.3G	48.0 (+28.3)	
			23.9M	32.9G	45.6	
	SE3D		26.4M	32.9G	46.7 (+1.1)	
	GE3D-G		23.9M	32.9G	45.7 (+0.1)	
TSM	GE3D-C		25.2M	33.3G	47.0 (+1.4)	
	S3D-G		25.1M	32.9G	46.8 (+1.2)	
	NLN		31.2M	49.4G	47.2 (+1.6)	
	GC	$(\frac{1}{2}, \frac{1}{2}C)$	24.2M	33.0G	48.7 (+3.1)	
		$\overline{(1, C)}$	25.1M	33.3G	48.9 (+3.3)	
		(1, C), loop	25.1M	33.3G	48.9 (+3.3)	
GST			21.0M	29.2G	44.4	
	GC	$(\frac{1}{2}, \frac{1}{2}C)$	21.4M	29.3G	45.5 (+1.1)	
		$\overline{(1, C)}$	22.3M	29.6G	45.6 (+1.2)	
		(1, <i>C</i>), loop	22.3M	29.6G	46.7 (+2.3)	
TDN		—	26.1M	36.0G	52.3	
	GC	(1, C)	27.4M	36.7G	53.7 (+1.4)	
		(1, <i>C</i>), loop	27.4M	36.7G	53.6 (+1.3)	

• Both the single Ecal and the combined GC consistently improve the recognition performance of backbones. **Example Demonstration:**

contexts.

• GC can boost the recognition of activities that need global/&local

Method	Params	#Frame	FLOPs×Clips	Top-1	Top-5	
TIN [36]	24.6M	16	67.0G×1	60.1	86.4	
RubiksNet [5]	8.5M	8	15.8G×2	61.7	87.3	
TSM+TPN [51]		8	33.0G×1	62.0		
SlowFast [7]	32.9M	4+32	65.7G×6	61.9	87.0	
SlowFast(R101) [7]	53.3M	8+32	106G×6	63.1	87.6	
SmallBig [22]		16	114.0G×6	63.8	88.9	
STM [19]	24.0M	16	33.3G×30	64.2	89.8	
TEA [23]		16	70.0G×30	65.1	89.9	
TEINet [27]	30.4M×2	8+16	99.0G×1	65.5	89.8	
TANet [29]	25.1M×2	8+16	99.0G×6	66.0	90.1	
TimeSformer-HR [2]	121.4M	16	1703G×3	62.5		
ViViT-L [1]	352.1M	32	903G×4	65.4	89.8	
MViT-B [4]	36.6M	64	455G×3	67.7	90.9	
Video-Swin-B [28]	88.8M	16	321G×3	69.6	92.7	
TSN [56] from [26]	23.9M	8	32.9G×1	30.0	60.5	
GST* [30]	21.0M	8	29.2G×2	59.8	86.3	
GST* [30]	21.0M	16	58.4G×2	61.7	87.2	
GST* [30]	21.0M×2	8+16	87.6G×2	63.1	88.3	
TSM [26]	23.9M	8	32.9G×2	61.2	87.1	
TSM [26]	23.9M	16	65.8G×2	63.1	88.2	
TSM [26]	23.9M×2	8+16	98.7G×2	64.3	89.0	
TDN [45]	26.1M	8	36.0G×1	64.0	88.8	
TDN [45]	26.1M	16	72.0G×1	65.3	89.5	
TDN [45]	26.1M×2	8+16	108G×1	67.0	90.3	
GC-GST	22.3M	8	29.6G×2	61.9	87.8	
GC-GST	22.3M	16	59.1G×2	63.3	88.5	
GC-GST	22.3M×2	8+16	88.7G×2	65.0	89.5	
GC-TSN	25.1M	8	33.3G×2	62.4	87.9	
GC-TSN	25.1M	16	66.5G×2	64.8	89.4	
GC-TSN	25.1M	8+16	99.8G×2	66.3	90.3	
GC-TSM	25.1M	8	33.3G×2	63.0	88.4	
GC-TSM	25.1M	16	66.5G×2	64.9	89.7	
GC-TSM	25.1M×2	8+16	99.8G×2	66.7	90.6	
GC-TSM	25.1M×2	8+16	99.8G×6	67.5	90.9	
GC-TDN	27.4M	8	36.7G×1	64.9	89.7	
GC-TDN	27.4M	16	73.4G×1	65.9	90.0	
GC-TDN	27.4M×2	8+16	110.1G×1	67.8	91.2	

- to the SOTAs.

Result on Kinetics-400:

Model	Params	#Frame	FLOPs×Clips	Top1	Top5
I3D (InceptionV1) [3]		64		72.1	90.3
Nonlocal-I3D [47]	35.3M	32	$282G \times 10$	74.9	91.6
S3D-G (InceptionV1) [50]		64	$71.4G \times 30$	74.7	93.4
TEA [23]		16	70G×30	76.1	92.5
TEINet [27]	30.8M	16	66G×30	76.2	92.5
TANet [29]	25.6M	16	86G×12	76.9	92.9
SmallBig [22]		8	57G×30	76.3	92.5
SlowFast(8×8) [7]	32.9M	8+32	65.7G×30	77.0	92.6
X3D-L [6]	6.1M	16	$24.8G \times 30$	77.5	92.9
TSN [56]	24.3M	8	$32.9G \times 10$ clip	70.6	89.2
TSM [26]	24.3M	16	$66.0G \times 10$	74.7	91.4
TDN [45]	26.6M	8+16	$108.0G \times 30$	78.4	93.6
GC-TSN	25.6M	8	33.3G×10	75.2	92.1
GC-TSM	25.6M	8	$33.3 \text{G} \times 10$	75.4	91.9
GC-TSM	25.6M	16	66.6G×10	76.7	92.9
GC-TSM	25.6M	16	66.6G×30	77.1	92.9
GC-TDN	27.4M	8	$36.7G \times 30$	77.3	93.2
GC-TDN	27.4M	16	$73.4G \times 30$	78.8	93.8
GC-TDN	27.4M	8+16	$110.1G \times 30$	79.6	94.1

competing methods.

Code & Paper https://github.com/haoyanbir 18/Group-Contextualization

Result on Something-Something V2:

• The GC module boosts the 2D/3D video CNNs with substantial improvements on Something-Something V2 dataset.

• GC-Nets achieve either better or the best performances compared

• GC improves the performance of TSN, TSM and TDN by large margins on Kinetics-400 dataset, and GC-TDN with 8+16 frames achieves the highest top-1 accuracy of 79.6% over all the